Bacterial c-di-GMP has a key role in establishing host–microbe symbiosis

Nature Microbiology(2023)

引用 4|浏览5
暂无评分
摘要
Most microbes evolve faster than their hosts and should therefore drive evolution of host–microbe interactions. However, relatively little is known about the characteristics that define the adaptive path of microbes to host association. Here we identified microbial traits that mediate adaptation to hosts by experimentally evolving the free-living bacterium Pseudomonas lurida with the nematode Caenorhabditis elegans as its host. After ten passages, we repeatedly observed the evolution of beneficial host-specialist bacteria, with improved persistence in the nematode being associated with increased biofilm formation. Whole-genome sequencing revealed mutations that uniformly upregulate the bacterial second messenger, cyclic diguanylate (c-di-GMP). We subsequently generated mutants with upregulated c-di-GMP in different Pseudomonas strains and species, which consistently increased host association. Comparison of pseudomonad genomes from various environments revealed that c-di-GMP underlies adaptation to a variety of hosts, from plants to humans. This study indicates that c-di-GMP is fundamental for establishing host association.
更多
查看译文
关键词
Bacterial evolution,Bacterial genomics,Experimental evolution,Symbiosis,Life Sciences,general,Microbiology,Medical Microbiology,Parasitology,Infectious Diseases,Virology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要