Polydopamine and calcium functionalized fiber carrier for enhancing microbial attachment and Cr(VI) resistance

SCIENCE OF THE TOTAL ENVIRONMENT(2023)

引用 0|浏览1
暂无评分
摘要
The formation of biofilm determines the performance and stability of biofilm system. Increasing the hydrophilicity of the carrier surface could efficiently accelerate the attachment and growth of microorganisms. Here, the surface of polypropylene (PP) fiber carrier was modified with polydopamine (PDA) and calcium (Ca(II)) to enhance microbial attachment and toxicity resistance. The results of surface characteristic confirmed the selfpolymerization of PDA and the chelation mechanism of Ca(II). Subsequently, the biofilm formation experiments were conducted in sequencing batch biofilm reactors using both normal and chromium-containing wastewater. The biofilm on the surface of the modified carrier exhibited better nitrogen removal and Cr(VI) reduction ability. The biomass of the modified carrier was significantly increased, and the maximum microbial attachment amounts in normal wastewater and chrome-containing wastewater were 1153.34 and 511.78 mg/g carrier, respectively. Furthermore, the confocal laser scanning microscope (CLSM) indicated that the modified carrier coated with PDA and Ca(II) were both biocompatible, and the cell activity was significantly increased. 16S rRNA sequencing results showed that the modified carrier efficiently enriched both denitrification bacteria (Thauera and Flavobacterium) and chrome-reducing bacteria (Simplicispira and Arenimonas) to improve system stability and Cr(VI) resistance. Microbial phenotype prediction based on BugBase analysis further verified the enrichment effect of modified carriers on microorganisms responsible for biofilm formation and oxidative stress resistance. Overall, this work proposed a novel functional carrier that could provide references for advancing the application of biofilm systems in wastewater treatment.
更多
查看译文
关键词
Modified carrier,Biofilm,PDA,Nitrogen remova,l Cr(VI) resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要