Important properties of anion exchange resins for efficient removal of PFOS and PFOA from groundwater

Chemosphere(2023)

引用 0|浏览4
暂无评分
摘要
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) present in various water sources have raised a serious concern on their health risk worldwide. Anion exchange is known to be one of the effective treatment methods but the resin properties suitable for theses contaminants have not been fully understood. We examined four commercially available anion exchange resins with different properties (DIAION™ PA312, HPA25M, UBA120, and WA30) and one polymer-based adsorbent (HP20), for their PFOA and PFOS removal in the batch experiment. All or a part of the selected resins were further characterized for their functional group, surface morphology and pore size distribution. The 72 h batch experiment with the 100 mg/L PFOA or PFOS in the laboratory pure water matrix showed a superior capacity of the strong base anion exchange resins, the porous-type HPA25M and PA312, and the gel-type UBA120, for PFOA removal (92.6–97.9%). Among those resins, the high porous HPA25M was suggested most effective due to its remarkably high reaction rate and effectiveness to PFOS (99.9%). In the groundwater matrix, however, the performance of the those anion exchange resins was generally suppressed, causing up to 71% decrease in their removal rates. The least matrix impact was observed for PFOS removal by HPA25M, which indicated the resin's high selectivity to the contaminant. The physiochemical analysis indicated that the presence of relatively large pores (1 nm–10 nm) over HPA25M played an important role in the PFAS removal.
更多
查看译文
关键词
PFOA,PFOS,Anion exchange resin,Pore size distribution,Adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要