Chrome Extension
WeChat Mini Program
Use on ChatGLM

Surface modification significantly changed the effects of nano-polystyrene on sediment microbial communities and nitrogen metabolism.

Journal of hazardous materials(2023)

Cited 1|Views13
No score
Abstract
Nanoplastics are ubiquitous in the natural environment, and their ecological risks have received considerable attention. Surface modification is common for nanoplastics and an essential factor affecting their toxicity. However, studies on the potential effects of nanoplastics and their surface-modified forms on functional communities in aquatic systems are still scarce. This study investigated the effects of nano-polystyrene (nPS), amino-modified nPS (nPS-NH2), and carboxylated nPS (nPS-COOH) particles on sediment bacterial and fungal communities and their functions over a 60-day incubation period. The results showed that the fungal community was significantly inhibited by nPS-NH2 exposure, while the bacterial community diversity remained relatively stable in all nPS treatments. Proteobacteria and Ascomycota were the dominant phyla for the bacterial and fungal communities, respectively. Nitrification was inhibited in all nPS treatments, while denitrification was enhanced for nPS-NH2 and nPS-COOH treatments. The activity of four key denitrification enzymes (NAR, NIR, NOR, and NOS) was also significantly improved by nPS, resulting in increased nitrogen and nitrous oxide gas production, and decreased nitrate concentrations in the overlying water. This showed the total increased effect of nPS on the activity of denitrifiers. Our results suggest that surface modification significantly affects the effects of nPS on microbial communities and functions. The potential impacts of nPS on ecological functions should be elucidated with more attention.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined