Flexomagnetic Effect Enhanced Ferromagnetism and Magnetoelectrochemistry in Freestanding High-Entropy Alloy Films.

ACS nano(2023)

引用 0|浏览25
暂无评分
摘要
Freestanding thin films of functional materials enable the tuning of properties via strain and strain gradients, broadening their applications. Here, a systematic approach is proposed to fabricate freestanding CrMnFeCoNi high-entropy alloy (HEA) thin films by pulsed laser deposition using expansion-contraction of NaCl substrates and weak van der Waals interaction of the interface, which form wrinkles with inhomogeneous strain gradients when transferred to a viscous handle. We demonstrate that the nonuniform gradients of external strain (flexomagnetic effect) can induce the partial structural phase transition from FCC to BCC in the wrinkled HEA film, resulting in a 10-fold increase in its room-temperature saturation magnetization compared with the unstrained flat HEA film. Furthermore, after applying an external magnetic field, due to the different electron transfer behavior caused by the electron scattering in wrinkled and flat HEA films, their electrocatalytic magnetic responses showed a diametrically opposite picture. Our work provides a promising strategy for tuning physical and chemical properties via complex strained geometries.
更多
查看译文
关键词
freestanding thin film,strain gradients,high-entropyalloy,flexomagnetism,magnetoelectrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要