Bose condensation of upper-branch exciton-polaritons in a transferrable microcavity

arXiv (Cornell University)(2023)

引用 0|浏览17
暂无评分
摘要
Exciton-polaritons are composite bosonic quasiparticles arising from the strong coupling of excitonic transitions and optical modes. Exciton-polaritons have triggered wide exploration in the past decades not only due to their rich quantum phenomena such as superfluidity, superconductivity and quantized vortices but also due to their potential applications for unconventional coherent light sources and all-optical control elements. Here, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferrable WS$_2$ monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity. This sharp increase in intensity is accompanied by a decrease of the linewidth and an increase of the upper polariton temporal coherence, all of which are hallmarks of Bose-Einstein condensation. By simulating the quantum Boltzmann equation, we show that the upper polariton condensation only occurs for a particular range of particle density. We can attribute the creation of Bose condensation of the upper polariton to the following requirements: 1) the upper polariton is more excitonic than the lower one; 2) there is relatively more pumping in the upper branch; and 3) the conversion time from the upper to the lower polariton branch is long compared to the lifetime of the upper polaritons.
更多
查看译文
关键词
microcavity,bose,upper-branch,exciton-polaritons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要