Blocking Accretion Enables Dimension Reduction of Metal-Organic Framework for Photocatalytic Performance.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 0|浏览7
暂无评分
摘要
The evolution and formation process of two-dimensional metal-organic frameworks (MOFs) primarily arise from the anisotropic growth of crystals, leading to variations in photocatalytic performance. It is crucial to achieve a synergistic combination of anisotropic electron transfer direction and dimension reduction strategies. In this study, a novel approach that effectively blocks crystal growth accretion through the coordination of solvent molecules is presented, achieving the successful synthesis of impurity-free two-dimensional nanosheet Zn-PTC with exceptional hydrogen evolution reaction (HER) performance (15.4 mmol g  h ). The structural and photophysical characterizations validate the successful prevention of crystal accretion, while establishing correlation between structural anisotropy and intrinsic charge transfer mode through transient spectroscopy. These findings unequivocally demonstrate that electron transfer along the [001] direction plays a pivotal role in the redox performance of nano-Zn-PTC. Subsequently, by coupling the photocatalytic performance and density functional theory (DFT) simulation calculations, the carrier diffusion kinetics is explored, revealing that effective dimension reduction along the ligand-to-metal charge transfer (LMCT) direction is the key to achieving superior photocatalytic performance.
更多
查看译文
关键词
photocatalytic performance,metal‐organic framework,accretion enables dimension reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要