Exciton-exciton Interaction in Monolayer MoSe$_2$ from Mutual Screening of Coulomb Binding

arXiv (Cornell University)(2023)

引用 0|浏览7
暂无评分
摘要
The potential for low-threshold optical nonlinearity has received significant attention in the fields of photonics and conceptual optical neuron networks. Excitons in two-dimensional (2D) semiconductors are particularly promising in this regard as reduced screening and dimensional confinement foster their pronounced many-body interactions towards nonlinearity. However, experimental determination of the interactions remains ambiguous, as optical pumping in general creates a mixture of excitons and unbound carriers, where the impacts of band gap renormalization and carrier screening on exciton energy counteract each other. Here by comparing the influences on exciton ground and excited states energies in the photoluminescence spectroscopy of monolayer MoSe$_2$, we are able to identify separately the screening of Coulomb binding by the neutral excitons and by charge carriers. The energy difference between exciton ground state (A-1s) and excited state (A-2s) red-shifts by 5.5 meV when the neutral exciton density increases from 0 to $4\times 10^{11}$ cm$^{-2}$, in contrast to the blue shifts with the increase of either electron or hole density. This energy difference change is attributed to the mutual screening of Coulomb binding of neutral excitons, from which we extract an exciton polarizability of $\alpha_{2D}^{\rm exciton} = 2.55\times 10^{-17}$ eV(m/V)$^2$. Our finding uncovers a new mechanism that dominates the repulsive part of many-body interaction between neutral excitons.
更多
查看译文
关键词
coulomb binding,exciton-exciton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要