Neutrino propagation through Earth: modeling uncertainties using nuPyProp

arXiv (Cornell University)(2023)

Cited 0|Views30
No score
Abstract
Using the Earth as a neutrino converter, tau neutrino fluxes from astrophysical point sources can be detected by tau-lepton-induced extensive air showers (EASs). Both muon neutrino and tau neutrino induced upward-going EAS signals can be detected by terrestrial, sub-orbital and satellite-based instruments. The sensitivity of these neutrino telescopes can be evaluated with the nuSpaceSim package, which includes the nuPyProp simulation package. The nuPyProp package propagates neutrinos ($\nu_\mu$, $\nu_\tau$) through the Earth to produce the corresponding charged leptons (muons and tau-leptons). We use nuPyProp to quantify the uncertainties from Earth density models, tau depolarization effects and photo-nuclear electromagnetic energy loss models in the charged lepton exit probabilities and their spectra. The largest uncertainties come from electromagnetic energy loss modeling, with as much as a 20-50% difference between the models. We compare nuPyProp results with other simulation package results.
More
Translated text
Key words
propagation,uncertainties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined