Helicase-independent function of RIG-I against murine gammaherpesvirus 68 via blocking the nuclear translocation of viral proteins

International journal of biological macromolecules(2023)

引用 0|浏览10
暂无评分
摘要
Innate immunity is the first line of defense against viral pathogens. Retinoic Acid-Inducible Gene 1 (RIG-I) is a pattern recognition receptor that recognizes virus-associated double-stranded RNA and initiates the interferon responses. Besides signal transduction, RIG-I exerts direct antiviral functions to displace viral proteins on dsRNA via its Helicase activity. Nevertheless, this effector-like activity of RIG-I against herpesviruses remains largely unexplored. It has been previously reported that herpesviruses deamidate RIG-I, resulting in the abolishment of its Helicase activity and signal transduction. In this study, we discovered that RIG-I possessed signaling-independent antiviral activities against murine gamma herpesviruses 68 (γHV68, murid herpesvirus 4). Importantly, a Helicase-dead mutant of RIG-I (K270A) demonstrated comparable inhibition on herpesviruses lytic replication, indicating that this antiviral activity is Helicase-independent. Mechanistically, RIG-I bound the Replication and Transcription Activator (RTA) and diminished its nuclear localization to repress viral transcription. We further demonstrated that RIG-I blocked the nuclear translocation of ORF21 (Thymidine Kinase), ORF75c (vGAT), both of which form a nuclear complex with RTA and RNA polymerase II (Pol II) to facilitate viral transcription. Moreover, RIG-I retained ORF59 (DNA processivity factor) in the cytoplasm to repress viral DNA replication. Altogether, we illuminated a previously unidentified, Helicase-independent effector-like function of RIG-I against γHV68, representing an exquisite host strategy to counteract viral manipulations on innate immune signaling.
更多
查看译文
关键词
murine gammaherpesvirus,viral proteins,nuclear translocation,helicase-independent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要