谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Evaluation of Nitrogen Oxide Reduction Performance in Permeable Concrete Surfaces Treated with a TiO2 Photocatalyst

MATERIALS(2023)

引用 0|浏览2
暂无评分
摘要
Fine dust, recently classified as a carcinogen, has raised concerns about the health effects of air pollution. Vehicle emissions, particularly nitrogen oxide (NOx), contribute to ultrafine dust formation as a fine dust precursor. A photocatalyst, such as titanium dioxide (TiO2), is a material that causes a catalytic reaction when exposed to light, has exceptional characteristics such as decomposition of pollutants, and can be used permanently. This study aimed to investigate NOx reduction performance by developing ecofriendly permeable concrete with photocatalytic treatment to reduce fine dust generated from road mobile pollution sources. Permeable concrete specimens containing an activated loess and zeolite admixture were prepared and subjected to mechanical and durability tests. All specimens, including the control (CTRL) and admixture, met quality standard SPS-F-KSPIC-001-2006 for road pavement. Slip resistance and permeability coefficient also satisfied the standards, while freeze-thaw evaluation criteria were met only by CTRL and A1Z1 specimens. NOx reduction performance of the permeable concrete treated with TiO2 photocatalyst was assessed using ISO standard and tank chambers. NOx reduction efficiency of up to 77.5% was confirmed in the permeable concrete specimen with TiO2 content of 7.5%. Nitrate concentration measurements indirectly confirmed photolysis of nitrogen oxide. Incorporating TiO2 in construction materials such as roads and sidewalks can improve the atmospheric environment for pedestrians near roads by reducing NOx levels through photocatalysis.
更多
查看译文
关键词
air pollutant degradation,ecofriendly permeable concrete,fine dust precursor,nitrate,photocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要