谷歌浏览器插件
订阅小程序
在清言上使用

Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries

Journal of Energy Storage(2023)

引用 1|浏览3
暂无评分
摘要
Inhibition a battery's thermal runaway propagation can avoid serious accidents in electric vehicles. Emergency spray has been proven to be effective in suppressing thermal runaway of a single cell, but the effect of inhibiting thermal runaway propagation between multiple batteries still needs further investigation. In this study, the characteristics of thermal runaway propagation was experimentally investigated, and the emergency spray technology, with different cooling durations, was applied in various stages of thermal runaway propagation. The results indicated that the continuous spray could not only reduce the average maximum temperature, but also delay the diffusion among multiple batteries and provide further response time. However, after-combustion was a frequent occurrence when the spray shut down. A correlation model was proposed to evaluate the maximum heat production of lithium-ion batteries by calculating the enthalpy and mass of the reactants and short circuit energy. The required cooling quantity is determined by experiment and verified by experiment. These results could help the development of a cooling strategy for suppressing the thermal runaway propagation effectively with minimum cooling capacity.
更多
查看译文
关键词
thermal runaway propagation,emergency spray,lithium-ion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要