Galactooligosaccharide (GOS) Reduces Branched Short-Chain Fatty Acids, Ammonium, and pH in a Short-Term Colonic Fermentation Model

Massimo Marzorati,Jonas Ghyselinck,Pieter Van den Abbeele, Aleksandra Maruszak, Lucien F. Harthoorn

Applied microbiology(2023)

引用 2|浏览3
暂无评分
摘要
Prebiotics beneficially affect the gut microbiome. Bimuno®, a prebiotic supplement containing galactooligosaccharides (GOS), has multiple demonstrated prebiotic effects. Using short-term colonic incubations, the influence of GOS on the colonic microbiota of three healthy human adults was evaluated. Colonic reactors inoculated with fecal samples were untreated (blank) or supplemented with GOS. pH, gas pressure, short-chain fatty acids (SCFAs), lactic acid, branched SCFAs, ammonium, and microbial community composition were evaluated at 0 h, 6 h, 24 h, and 48 h. pH decreased and gas pressure increased (+29.01 kPa) with GOS treatment versus blank. Total SCFA (+22.4 mM), acetate (+14.1 mM), propionate (+5.5 mM), and butyrate (+5.8 mM) were higher for GOS than blank. Acetate and propionate production were highest earlier in the experiment, while butyrate production was highest between 24 h and 48 h. With GOS, lactic acid production increased between 0 h and 6 h (+14.4 mM) followed by apparent consumption. Levels of branched SCFAs and ammonium were low with GOS and reduced versus blank (respectively, −2.1 mM and −256.0 mg/L). GOS significantly increased the relative abundance of Bifidobacterium longum (LDA = 4; p = 0.006), and significantly increased the absolute abundance of Bifidobacteriaceae (p < 0.001), Lactobacillaceae (p < 0.05), Bifidobacterium adolescentis (LDA = 4.5; p < 0.001), and Bifidobacterium ruminantium (LDA= 3.2; p = 0.01). This in vitro model demonstrated the prebiotic potential of GOS as supplementation resulted in increased beneficial bacteria, SCFA, and lactic acid and decreased branched SCFA, pH, and ammonium.
更多
查看译文
关键词
fatty acids,short-chain,short-term
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要