MMP-1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via the JNK and ERK pathway.

The international journal of biochemistry & cell biology(2020)

引用 15|浏览8
暂无评分
摘要
Enhancing the functions of mesenchymal stem cells (MSCs) is considered a potential approach for promoting tissue regeneration. In this study, we investigated the effects of Matrix Metalloproteinase-1 (MMP-1) on bone marrow mesenchymal stem cells (BMSCs) and its mechanism. Our results showed that knockdown of MMP-1 impeded scratch closure, attenuated proliferation, inhibited ALP activity, ALP denser staining and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in BMSCs, while 20 ng/mL recombinant human MMP-1 protein (rhMMP-1) significantly accelerated scratch closure, enhanced proliferation, ALP activity, ALP denser staining and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of MMP-1 inhibited the expression of phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated extracellular regulated protein kinases (p-ERK), while 20 ng/mL rhMMP-1 increased the expression of p-JNK and p-ERK in BMSCs. Furthermore, inhibition of c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases (ERK) by their inhibitor SP600125 and PD98059 dramatically blocked MMP-1-enhanced ALP activity and mineralization in BMSCs. Our results revealed that MMP-1 could accelerate the osteogenic differentiation potentials of BMSCs via the JNK and ERK pathway, providing the mechanism underlying MSC biology and identifying a potential target for improving bone tissue regeneration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要