Extent of interlocking and metallurgical bonding in friction riveting of aluminum alloy to steel

Research Square (Research Square)(2023)

引用 0|浏览1
暂无评分
摘要
In this study, the joining of 6061-T6 aluminum alloy and DP590 steel using a M42 steel rivet via friction riveting technique is investigated. The surface morphology and microstructure characterization reveal the formation of an anchor zone that imparts mechanical interlock as well as the formation of metallurgical bonds at the interface of aluminum and steel. A combination of interlocking and bonding results in the achievement of a high load-carrying capacity of 5.7 kN during lap shear testing at room temperature. A finite element-based computational model was developed which accurately predicted the lap shear response of the joint. The model revealed that the metallurgical bond formed during fric-riveting adds 39% peak load strength to the joint. An extensive microstructural investigation, post-lap-shear fractography, and the modeling results, together provided insights on the joint failure mechanism. This study highlights that friction riveting is a promising method for aluminum-to-steel dissimilar joining, which is important for lighweighing automotive vehicles for energy efficiency.
更多
查看译文
关键词
Friction riveting (fric-riveting),AA6061 aluminum alloys,DP590 steel,Finite element modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要