Electrochemical activation strategy enabled ammonium vanadate cathodes for all-climate zinc-ion batteries

Nano Energy(2023)

引用 1|浏览10
暂无评分
摘要
Aqueous zinc-ion batteries (ZIBs) have attracted significant attention for grid-scale energy applications due to their low cost, intrinsic safety, and environmental friendliness. However, the energy density of current ZIBs is impeded by unsatisfactory performance of cathodes, due to their limited areal capacity and low active material loading, especially at extreme environments. Herein, an electrochemical activation strategy is put forward to build high energy density ZIBs by designing a flexible cathode composed of NH4+ pillared ammonium vanadate nanosheets on carbon cloth (NVMCE@CC). The electrochemical activation process with high anodic potential (> 1.5 V vs. Zn2+/Zn) guarantees the effective conversion of low-valent to high-valent vanadium and promotes the utilization of large amounts of vanadium elements in the NVMCE@CC composite. Meanwhile, the pillared NH4+ ions expand the interlayer spacing and enhance the structural integrity through the hydrogen bonding between NH4+ and V-O framework. Consequently, the activated NVMCE@CC cathode with a high mass-loading of-5.2 mg cm-2 delivers large areal capacity (-1.74 mAh cm-2 at 1 mA cm-2) and superior cycling stability (capacity retention of 72.1% after 1500 cycles). Importantly, the flexible cathode shows admirable capacities of 0.52 mAh cm-2 at 60 degrees C and 0.55 mAh cm-2 at -10 degrees C, respectively. Moreover, the NVMCE@CC//Zn@CC quasi-solid-state battery demonstrates excellent safety performance and performs well in extreme situations, including bending, cutting, hammering, and washing. This work provides enlightenment for the development of large-areal-capacity vanadium-based cathode materials for practical ZIBs.
更多
查看译文
关键词
Zinc-ion batteries,Electrochemical activation,Ammonium vanadate,Large areal capacity,All-climate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要