Interfacial States in Au/Reduced TiO2 Plasmonic Photocatalysts Quench Hot-Carrier Photoactivity

The journal of physical chemistry. C, Nanomaterials and interfaces(2023)

引用 0|浏览4
暂无评分
摘要
Understanding the interface of plasmonic nanostructuresis essentialfor improving the performance of photocatalysts. Surface defects insemiconductors modify the dynamics of charge carriers, which are notwell understood yet. Here, we take advantage of scanning photoelectrochemicalmicroscopy (SPECM) as a fast and effective tool for detecting theimpact of surface defects on the photoactivity of plasmonic hybridnanostructures. We evidenced a significant photoactivity activationof TiO2 ultrathin films under visible light upon mild reductiontreatment. Through Au nanoparticle (NP) arrays deposited on differentreduced TiO2 films, the plasmonic photoactivity mappingrevealed the effect of interfacial defects on hot charge carriers,which quenched the plasmonic activity by (i) increasing the recombinationrate between hot charge carriers and (ii) leaking electrons (injectedand generated in TiO2) into the Au NPs. Our results showthat the catalyst's photoactivity depends on the concentrationof surface defects and the population distribution of Au NPs. Thepresent study unlocks the fast and simple detection of the surfaceengineering effect on the photocatalytic activity of plasmonic semiconductorsystems.
更多
查看译文
关键词
au/reduced tio<sub>2</sub>,hot-carrier
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要