Thermal neutron detection and track recognition method in reference and out-of-field radiotherapy FLASH electron fields using Timepix3 detectors

Physics in medicine and biology(2023)

引用 0|浏览8
暂无评分
摘要
Objective. This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux. Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a (LiF)-Li-6 neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter. Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv center dot cm(2)) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4 mu s) at the reference depth, showed a contribution of flux of 4.07(8) x 10(3) particles center dot cm(-2)center dot s(-1) and equivalent dose of 1.73(3) nSv per pulse, which is lower by similar to 9 orders of magnitude than the delivered dose. Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.
更多
查看译文
关键词
6LiF converter,FLASH electron radiotherapy,Timepix3 pixel detector,equivalent dose,out-of-field dose from neutrons,particle type discrimination,thermal neutrons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要