Multi-Instance Adversarial Attack on GNN-Based Malicious Domain Detection

CoRR(2023)

引用 0|浏览24
暂无评分
摘要
Malicious domain detection (MDD) is an open security challenge that aims to detect if an Internet domain is associated with cyber-attacks. Among many approaches to this problem, graph neural networks (GNNs) are deemed highly effective. GNN-based MDD uses DNS logs to represent Internet domains as nodes in a maliciousness graph (DMG) and trains a GNN to infer their maliciousness by leveraging identified malicious domains. Since this method relies on accessible DNS logs to construct DMGs, it exposes a vulnerability for adversaries to manipulate their domain nodes' features and connections within DMGs. Existing research mainly concentrates on threat models that manipulate individual attacker nodes. However, adversaries commonly generate multiple domains to achieve their goals economically and avoid detection. Their objective is to evade discovery across as many domains as feasible. In this work, we call the attack that manipulates several nodes in the DMG concurrently a multi-instance evasion attack. We present theoretical and empirical evidence that the existing single-instance evasion techniques for are inadequate to launch multi-instance evasion attacks against GNN-based MDDs. Therefore, we introduce MintA, an inference-time multi-instance adversarial attack on GNN-based MDDs. MintA enhances node and neighborhood evasiveness through optimized perturbations and operates successfully with only black-box access to the target model, eliminating the need for knowledge about the model's specifics or non-adversary nodes. We formulate an optimization challenge for MintA, achieving an approximate solution. Evaluating MintA on a leading GNN-based MDD technique with real-world data showcases an attack success rate exceeding 80%. These findings act as a warning for security experts, underscoring GNN-based MDDs' susceptibility to practical attacks that can undermine their effectiveness and benefits.
更多
查看译文
关键词
malicious domain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要