In situ Fault Diagnosis of Indium Tin Oxide Electrodes by Processing S-Parameter Patterns

Tae Yeob Kang,Haebom Lee,Sungho Suh

CoRR(2023)

引用 0|浏览5
暂无评分
摘要
In the field of optoelectronics, indium tin oxide (ITO) electrodes play a crucial role in various applications, such as displays, sensors, and solar cells. Effective fault detection and diagnosis of the ITO electrodes are essential to ensure the performance and reliability of the devices. However, traditional visual inspection is challenging with transparent ITO electrodes, and existing fault detection methods have limitations in determining the root causes of the defects, often requiring destructive evaluations. In this study, an in situ fault diagnosis method is proposed using scattering parameter (S-parameter) signal processing, offering early detection, high diagnostic accuracy, noise robustness, and root cause analysis. A comprehensive S-parameter pattern database is obtained according to defect states. Deep learning (DL) approaches, including multilayer perceptron (MLP), convolutional neural network (CNN), and transformer, are then used to simultaneously analyze the cause and severity of defects. Notably, it is demonstrated that the diagnostic performance under additive noise levels can be significantly enhanced by combining different channels of the S-parameters as input to the learning algorithms, as confirmed through the t-distributed stochastic neighbor embedding (t-SNE) dimension reduction visualization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要