谷歌浏览器插件
订阅小程序
在清言上使用

X- and Y-Type Thioredoxins Maintain Redox Homeostasis on Photosystem I Acceptor Side under Fluctuating Light.

PLANT PHYSIOLOGY(2023)

引用 0|浏览10
暂无评分
摘要
Plants cope with sudden increases in light intensity through various photoprotective mechanisms. Redox regulation by thioredoxin (Trx) systems also contributes to this process. Whereas the functions of f- and m-type Trxs in response to such fluctuating light conditions have been extensively investigated, those of x- and y-type Trxs are largely unknown. Here, we analyzed the trx x single, trx y1 trx y2 double, and trx x trx y1 trx y2 triple mutants in Arabidopsis (Arabidopsis thaliana). A detailed analysis of photosynthesis revealed changes in photosystem I (PSI) parameters under low light in trx x and trx x trx y1 trx y2. The electron acceptor side of PSI was more reduced in these mutants than in the wild type. This mutant phenotype was more pronounced under fluctuating light conditions. During both low- and high-light phases, the PSI acceptor side was largely limited in trx x and trx x trx y1 trx y2. After fluctuating light treatment, we observed more severe PSI photoinhibition in trx x and trx x trx y1 trx y2 than in the wild type. Furthermore, when grown under fluctuating light conditions, trx x and trx x trx y1 trx y2 plants showed impaired growth and decreased level of PSI subunits. These results suggest that Trx x and Trx y prevent redox imbalance on the PSI acceptor side, which is required to protect PSI from photoinhibition, especially under fluctuating light. We also propose that Trx x and Trx y contribute to maintaining the redox balance even under constant low-light conditions to prepare for sudden increases in light intensity.
更多
查看译文
关键词
Redox Regulation,Thioredoxin System
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要