In vivo quantification of human aqueous veins by enhanced depth imaging optical coherence tomography and optical coherence tomography angiography images

International Journal of Ophthalmology(2023)

Cited 0|Views6
No score
Abstract
AIM: To investigate the aqueous vein in vivo by using enhanced depth imaging optical coherence tomography (EDI-OCT) and optical coherence tomography angiography (OCTA). METHODS: In this cross-sectional comparative study, 30 healthy participants were enrolled. Images of the aqueous and conjunctival veins were captured by EDI-OCT and OCTA before and after water loading. The area, height, width, location depth and blood flow of the aqueous vein and conjunctival vein were measured by Image J software. RESULTS: In the static state, the area of the aqueous vein was 8166.7±3272.7 μm2, which was smaller than that of the conjunctival vein (13 690±7457 μm2, P<0.001). The mean blood flow density of the aqueous vein was 35.3%±12.6%, which was significantly less than that of the conjunctival vein (51.5%±10.6%, P<0.001). After water loading, the area of the aqueous vein decreased significantly from 8725.8±779.4 μm2 (baseline) to 7005.2±566.2 μm2 at 45min but rose to 7863.0±703.2 μm2 at 60min (P=0.032). The blood flow density of the aqueous vein decreased significantly from 41.2%±4.5% (baseline) to 35.4%±3.2% at 30min but returned to 45.6%±3.6% at 60min (P=0.021). CONCLUSION: The structure and blood flow density of the aqueous vein can be effectively evaluated by OCT and OCTA. These may become biological indicators to evaluate aqueous vein changes and aqueous outflow resistance under different interventions in glaucoma patients.
More
Translated text
Key words
aqueous vein, optical coherence tomography, optical coherence tomography angiography, water drinking test
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined