Magnetic nanoparticle swarm with upstream motility and peritumor blood vessel crossing ability.

Nanoscale(2023)

引用 1|浏览6
暂无评分
摘要
Micro-nano-robots show great potential and value for applications in targeted drug delivery; however, very few current studies have enabled micro-nano-robots to move against blood flow, and in addition, how micro-nano-robots can penetrate endothelial cells and enter tissues vascular permeation remains unclear. Inspired by the bionics of dynamic aggregation in wild herring schools and transvascular permeation of leukocytes, we propose a novel drug delivery strategy where thousands of magnetic nanoparticles (MNPs) can be assembled into swarms under the guidance of a specially designed electromagnetic field. The vortex-like swarms of magnetic nanoparticles exhibit excellent stability, allowing them to withstand the impact of high-speed flow and move upstream along the vessel wall, stopping at the target location. When the vortex-like swarms encounter a tumor periphery without a continuous vessel wall, their rheological properties actively adhere them to the edges of the vascular endothelial gap, using their deformability to crawl through narrow intercellular gaps, enabling large-scale targeted drug delivery. This cluster of miniature nanorobots can be reshaped and reconfigured to perform a variety of tasks according to the environmental demands of the circulatory system, providing new solutions for a variety of biomedical field applications.
更多
查看译文
关键词
magnetic nanoparticle swarm,blood,upstream motility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要