Beating one bit of communication with and without quantum pseudo-telepathy

arXiv (Cornell University)(2023)

引用 1|浏览5
暂无评分
摘要
According to Bell's theorem, certain entangled states cannot be simulated classically using local hidden variables (LHV). But if can we augment LHV by classical communication, how many bits are needed to simulate them? There is a strong evidence that a single bit of communication is powerful enough to simulate projective measurements on any two-qubit entangled state. In this study, we present Bell-like scenarios where bipartite correlations resulting from projective measurements on higher dimensional states cannot be simulated with a single bit of communication. These include a three-input, a four-input, a seven-input, and a 63-input bipartite Bell-like inequality with 80089, 64, 16, and 2 outputs, respectively. Two copies of emblematic Bell expressions, such as the Magic square pseudo-telepathy game, prove to be particularly powerful, requiring a $16\times 16$ state to beat the one-bit classical bound, and look a promising candidate for implementation on an optical platform.
更多
查看译文
关键词
quantum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要