Active crystallization from power functional theory

PHYSICAL REVIEW E(2024)

引用 0|浏览1
暂无评分
摘要
We address the gas, liquid, and crystal phase behaviors of active Brownian particles in three dimensions. The nonequilibrium force balance at coexistence leads to equality of state functions for which we use power functional approximations. Motility-induced phase separation starts at a critical point and quickly becomes metastable against active freezing for Peclet numbers above a nonequilibrium triple point. The mean swim speed acts as a state variable, similar to the density of depletion agents in colloidal demixing. We obtain agreement with recent simulation results and correctly predict the strength of particle number fluctuations in active fluids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要