Effects of miR-143 regulation on cardiomyocytes apoptosis in doxorubicin cardiotoxicity based on integrated bioinformatics analysis.

Toxicology in vitro : an international journal published in association with BIBRA(2023)

引用 0|浏览9
暂无评分
摘要
This study aimed to investigate the effect of miRNAs involving oxidative stress response in doxorubicin (DOX)-induced cardiotoxicity based on the data from Gene Expression Omnibus (GEO) database and experimental results via integrated bioinformatics analysis. MiRNA expression profiles of DOX-induced cardiotoxicity in rat myocardial tissues and adult rat cardiomyocytes (ARC) were extracted from GEO datasets (GSE36239). Differential expression miRNA (DEMs) were separately captured in rat myocardial tissues and in ARC, and intersected between rat myocardial tissues and ARC via Venny 2.1. Subsequently, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analyzed 46 target genes of miR-143, one of 6 DEMs, and HIF-1 and PI3K-Akt signaling pathway were significantly enriched. Further experimental results showed DOX-induced oxidative stress downregulated the expression of miR-143, and then promoted target gene Bbc3 expression and H9c2 apoptosis, the intervention of phosphocreatine (PCr) or N-acetyl-L-cystine (NAC) alleviated oxidative stress, apoptosis and Bbc3 expression, upregulated miR-143 in DOX-induced cardiotoxicity in vivo and in vitro. Our findings elucidated the regulatory network between miR-143 and oxidative stress in DOX-induced cardiotoxicity, and might unveiled a potential biomarker and molecular mechanisms, which could be helpful to the diagnosis and treatment of DOX-induced cardiotoxicity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要