Improved Approximation Bounds for Minimum Weight Cycle in the CONGEST Model

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
Minimum Weight Cycle (MWC) is the problem of finding a simple cycle of minimum weight in a graph $G=(V,E)$. This is a fundamental graph problem with classical sequential algorithms that run in $\tilde{O}(n^3)$ and $\tilde{O}(mn)$ time where $n=|V|$ and $m=|E|$. In recent years this problem has received significant attention in the context of hardness through fine grained sequential complexity as well as in design of faster sequential approximation algorithms. For computing minimum weight cycle in the distributed CONGEST model, near-linear in $n$ lower and upper bounds on round complexity are known for directed graphs (weighted and unweighted), and for undirected weighted graphs; these lower bounds also apply to any $(2-\epsilon)$-approximation algorithm. This paper focuses on round complexity bounds for approximating MWC in the CONGEST model: For coarse approximations we show that for any constant $\alpha >1$, computing an $\alpha$-approximation of MWC requires $\Omega (\frac{\sqrt n}{\log n})$ rounds on weighted undirected graphs and on directed graphs, even if unweighted. We complement these lower bounds with sublinear $\tilde{O}(n^{2/3}+D)$-round algorithms for approximating MWC close to a factor of 2 in these classes of graphs. A key ingredient of our approximation algorithms is an efficient algorithm for computing $(1+\epsilon)$-approximate shortest paths from $k$ sources in directed and weighted graphs, which may be of independent interest for other CONGEST problems. We present an algorithm that runs in $\tilde{O}(\sqrt{nk} + D)$ rounds if $k \ge n^{1/3}$ and $\tilde{O}(\sqrt{nk} + k^{2/5}n^{2/5+o(1)}D^{2/5} + D)$ rounds if $k更多
查看译文
关键词
minimum weight cycle,improved approximation bounds,congest,model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要