Inhalation powder development without carrier: how to engineer ultra-flying microparticles?

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V(2023)

引用 0|浏览17
暂无评分
摘要
Particle engineering technologies have led to the commercialization of new inhaled powders like PulmoSol or PulmoSphere. Such platforms are produced by spray drying, a well-known process popular for its versatility, thanks to wide-ranging working parameters. Whereas these powders contain a high drug-loading, we have studied a low-dose case, in optimizing the production of powders with two anti-asthmatic drugs, budesonide and formoterol. Using a Design of Experiments approach, 27 powders were produced, with varying excipient mixes (cyclodextrins, raffinose and maltodextrins), solution concentrations, and spray drying parameters in order to maximize deep lung deposition, measured through fine particle fraction (next generation impactor). Based on statistical analysis, two powders made of hydropropyl-β-cyclodextrin alone or mixed with raffinose and L-leucine were selected. Indeed, the two powders demonstrated very high fine particle fraction (>55%), considerably better than commercially available products. Deep lung deposition has been correlated to very fine particle size and lower microparticles interactions shown by laser diffraction assays at different working pressures, and particle morphometry. Moreover, the two drugs would be predicted to deposit homogeneously into the lung according to impaction studies. Uniform delivery is fundamental to control symptoms of asthma. In this study, we develop carrier-free inhalation powders promoting very efficient lung deposition and demonstrate the high impact of inter-particular interactions intensity on their aerosolization behavior.
更多
查看译文
关键词
DPI,Particle engineering,Spray drying,DOE,Inhalation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要