Semi-solid enzymolysis enhanced the protective effects of fruiting body powders and polysaccharides of Herinaceus erinaceus on gastric mucosal injury.

International journal of biological macromolecules(2023)

Cited 0|Views18
No score
Abstract
This study demonstrated the effects of semi-solid enzymolysis on physicochemical properties of fruiting body powders and polysaccharides from Hericium erinaceus and protective effects on gastric mucosal injury. Semi-solid enzymolysis could reduce the particle size, change the microstructure of fruiting body powders, increase the contents of soluble polysaccharide (26.26-67.04 %) and uronic acid (16.97-31.12 %) and reduce the molecular weight of polysaccharides. The digestibility of fruiting body powder of H. erinaceus after semi-solid enzymolysis was increased by 31.4 %, compared with that of the fruiting body powder of H. erinaceus without enzymolysis. Semi-solid enzymolysis could enhance the protective effects of the fruiting body powders and polysaccharides on ethanol-induced human gastric mucosal epithelial cells (GES-1) cells, increase the production of superoxide dismutase (SOD, 0-37.33 %) and catalase (CAT, 2.47-18.46 %), and inhibit the production of malonaldehyde (MDA, 2.45-19.62 %), myeloperoxidase (MPO, 0-13.54 %), interleukin (IL-6, 4.39-24.62 %) and tumor necrosis factor-α (TNF-α, 5.97-12.25 %). Semi-solid enzymolysis could improve the inhibition rate of the fruiting body powder on gastric ulcer (32.70-46.26 %), inhibit oxidative stress and inflammation, and protect rats with acute gastric mucosal injury against the stimulation of ethanol on gastric mucosa. In conclusion, semi-solid enzymolysis may enhance the protective effects of the fruiting body powders and polysaccharides on gastric mucosal injury.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined