Elaboration and characterization of ε-polylysine‑sodium alginate nanoparticles for sustained antimicrobial activity.

International journal of biological macromolecules(2023)

Cited 1|Views6
No score
Abstract
The ε-polylysine (ε-PL) is a food-grade antimicrobial substance. The cationic ε-PL molecules may interact with anionic components of food matrix causing turbidity, sedimentation, and hampering the antimicrobial activity. Herein, sodium alginate (SA) was used as wall material to encapsulate ε-PL, thereby to synthesize ε-PL-SA nanoparticles (ε-PL-SA-NPs). Monosaccharide composition and molecular weight of SA were characterized. The synthetic scheme is optimized and physicochemical characteristics and antimicrobial potential was investigated. Findings indicate that SA primarily consisted of mannuronic acid (95.25 %), weight average molecular weight (Mw) of SA was 176.464 kDa, and the molecular configuration of SA was irregular line clusters. The encapsulation efficiency (EE) of ε-PL in ε-PL-SA-NPs made under optimum strategy (at pH 6.0, mass ratio of ε-PL to SA is 0.14, and SA concentration is 6 mg/mL) is about 99.74 %. The particle size of ε-PL-SA-NPs is ∼541.86 nm. The SEM image showed that the ε-PL-SA-NPs had a nearly spherical morphology. Zeta-potential and FTIR data reveal the interaction between ε-PL and SA was electrostatic and the hydrogen bonding. Agar diffusion assay exhibit that ε-PL-SA-NPs had antimicrobial activity against Escherichia coli and Staphylococcus aureus. The salmon preservation experiments reveal sustained antimicrobial efficacy of ε-PL-SA-NPs.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined