谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Multifunctional light-controllable nanozyme enabled bimodal fluorometric/colorimetric sensing of mercury ions at ambient pH.

Biosensors & bioelectronics(2023)

引用 3|浏览5
暂无评分
摘要
Nanomaterials with enzyme-like catalytic features (nanozymes) find wide use in analytical sensing. Apart from catalytic characteristics, some other interesting functions coexist in the materials. How to combine these properties to design multifunctional nanozymes for new sensing strategy development is challenging. Besides, in nanozymes it is still a challenge to conveniently control the catalytic process, which also hinders their further applications in advanced biochemical analysis. To remove the above barriers, here we design a light-controllable multifunctional nanozyme, namely manganese-inserted cadmium telluride (Mn-CdTe) particles, that integrates oxidase-like activity with luminescence together, to achieve the fluorometric/colorimetric dual-mode detection of toxic mercury ions (Hg2+) at ambient pH. The Mn-CdTe exhibits a light-triggered oxidase-mimicking catalytic behavior to induce chromogenic reactions, thus enabling one to start or stop the catalytic progress easily via applying or withdrawing light irradiation. Meanwhile, the quantum dot material can exhibit bright photoluminescence, which provides the fluorometric channel to sense targets. When Hg2+ is introduced, it rapidly leans toward Mn-CdTe through electrostatic interaction and Te-Hg bonding and induces the aggregation of the latter. As a result, the luminescence of Mn-CdTe is dynamically quenched, and the masking of active sites in aggregated Mn-CdTe leads to the decrease of light-initiated oxidase-mimetic activity. According to this principle, a new fluorometric/colorimetric bimodal method was established for Hg2+ determination with excellent performance. A 3D-printed portable platform combining paper-based test strips and an App-equipped smartphone was further fabricated, making it possible to achieve in-field sensing of the analyte in various matrices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要