Role of ABA in the adaptive response of Arabidopsis plants to long-term boron toxicity treatment.

Plant physiology and biochemistry : PPB(2023)

引用 0|浏览4
暂无评分
摘要
Boron (B) toxicity causes impairments in several plant metabolic and physiological processes. Under conditions of excessive B availability, this micronutrient is passively transported through the transpiration stream and accumulates in leaves, causing the development of necrotic regions in leaf tips. Some plants have developed adaptive mechanisms to minimize the toxic effects of excessive B accumulation in their tissues. Thus, for instance, in Arabidopsis it has been described an ABA-dependent decrease in the transpiration rate that would restrict B accumulation in aerial plant tissues in response to short-term B toxicity, this effect being mediated by AtNCED3 (which encodes a key enzyme for ABA biosynthesis). The present work aimed to study the possible involvement of ABA in the adjustment of plant water balance and B homeostasis during the adaptive response of Arabidopsis to prolonged B toxicity. For this purpose, Arabidopsis wild-type and the ABA-deficient nced3-2 mutant plants were subjected to B toxicity for 7 days. We show that ABA-dependent stomatal closure is determinant for the adjustment of plant water relations under conditions of prolonged B toxicity. Results suggest that, in addition to the AtNCED3 gene, the AtNCED5 gene could also be involved in this ABA-dependent stomatal closure. Finally, our results also indicate the possible role of endogenous root ABA content in the mechanism of active efflux of B via BOR4 (efflux-type B transporter) from the root to the external environment under excess B conditions.
更多
查看译文
关键词
Aquaporin,Boron transporters,Stomatal closure,Water balance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要