Biosynthesis approach of zinc oxide nanoparticles for aqueous phosphorous removal: physicochemical properties and antibacterial activities

BMC chemistry(2023)

引用 2|浏览6
暂无评分
摘要
In this study, phosphorus (PO 4 3– -P) is removed from water samples using zinc oxide nanoparticles (ZnO NPs). These nanoparticles are produced easily, quickly, and sustainably using Onion extracts ( Allium cepa ) at an average crystallite size of 8.13 nm using the Debye–Scherrer equation in the hexagonal wurtzite phase. The characterization and investigation of bio-synthesis ZnO NPs were carried out. With an initial concentration of 250 mg/L of P, the effects of the adsorbent dose, pH, contact time, and temperature were examined. At pH = 3 and T = 300 K, ZnO NPs achieved the optimum sorption capacity of 84 mg/g, which was superior to many other adsorbents. The isothermal study was found to fit the Langmuir model at a monolayer capacity of 89.8 mg/g, and the kinetic study was found to follow the pseudo-second-order model. The adsorption process was verified to be endothermic and spontaneous by thermodynamic characteristics. As a result of their low cost as an adsorbent and their high metal absorption, ZnO NPs were found to be the most promising sorbent in this investigation and have the potential to be used as effective sorbents for the removal of P from aqueous solutions. The antimicrobial activity results showed that ZnO NPs concentration had greater antibacterial activity than conventional Cefotaxime, which was utilized as a positive control in the inhibitory zone. However, no inhibitory zone was visible in the controlled wells that had been supplemented with onion extract and DMSO.
更多
查看译文
关键词
Zinc oxide,Nanoparticles,Adsorption,Phosphorus,Antibacterial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要