One versus two-stage codigestion of sugarcane vinasse and glycerol: Assessing combinations at mesophilic and (hyper) thermophilic conditions

The Science of the total environment(2023)

Cited 0|Views5
No score
Abstract
Sugarcane vinasse exits the distillation process at high temperatures, which may differ from the optimal temperatures for dark fermentation and anaerobic digestion. A 15 °C temperature increase, for example, stops sugarcane vinasse methane generation, making distillery vinasse digestion complicated. Conversely, in other aspects, co-digesting vinasse and glycerol has been proven to stabilize methane production from vinasse because of sulfate dilution. However, glycerol has not been tested to stabilize vinasse digestion under temperature changes. Thus, this study compared the effects of different temperature settings on the co-digestion of 10 g COD L−1 of vinasse and glycerol (50 %:50 % on a COD basis) in anaerobic fluidized bed reactors (AFBR), i.e., an acidogenic and a methanogenic one-stage AFBRs operated at 55, 60, and 65 °C, and two methanogenic AFBRs fed both with acidogenic effluent (one operated at room temperature (25 °C) and the other at 55, 60, and 65 °C). The co-digestion provided steady methane generation at all AFBRs, with methane production rates ranging from 2.27 to 2.93 L CH4 d−1 L−1, whether in one or two stages. A feature of this research was to unravel the black box of the role of sulfate in the digestion of sugarcane vinasse, which was rarely studied. Desulfovibrio was the primary genus degrading 1,3-propanediol into 3-hydroxypropanoate after genome sequencing. Phosphate acetyltransferase (EC: 2.3.1.8, K00625) and acetate kinase (EC: 2.7.2.1, K00925) genes were also found, suggesting propionate was metabolized. In practical aspects, regarding the two-stage systems, the thermophilic-mesophilic (acidogenic-methanogenic) configuration is best for extracting additional value-added products because 1,3-propanediol may be recovered at high yields with steady methane production at reduced energy expenditure in a reactor operated at room temperature. However, the one-stage design is best for methane generation per system volume since it remained stable with rising temperatures, and all systems presented similar methane production rates.
More
Translated text
Key words
Anaerobic fluidized bed reactor,1,3-propanediol degradation,Shotgun metagenomics,Sulfate-rich wastewater,Sulfate-reducing Bacteria
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined