Direct photocatalytic patterning of colloidal emissive nanomaterials.

Science advances(2023)

Cited 0|Views9
No score
Abstract
We present a universal direct photocatalytic patterning method that can completely preserve the optical properties of perovskite nanocrystals (PeNCs) and other emissive nanomaterials. Solubility change of PeNCs is achieved mainly by a photoinduced thiol-ene click reaction between specially tailored surface ligands and a dual-role photocatalytic reagent, pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), where the thiol-ene reaction is enabled at a low light intensity dose (~ 30 millijoules per square centimeter) by the strong photocatalytic activity of PeNCs. The photochemical reaction mechanism was investigated using various analyses at each patterning step. The PTMP also acts as a defect passivation agent for the PeNCs and even enhances their photoluminescence quantum yield (by ~5%) and photostability. Multicolor patterns of cesium lead halide (CsPbX)PeNCs were fabricated with high resolution (<1 micrometer). Our method is widely applicable to other classes of nanomaterials including colloidal cadmium selenide-based and indium phosphide-based quantum dots and light-emitting polymers; this generality provides a nondestructive and simple way to pattern various functional materials and devices.
More
Translated text
Key words
colloidal emissive nanomaterials,direct photocatalytic patterning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined