Structural basis of archaeal FttA-dependent transcription termination

biorxiv(2023)

引用 0|浏览1
暂无评分
摘要
The ribonuclease FttA mediates factor-dependent transcription termination in archaea[1][1]–[3][2]. Here, we report the structure of a Thermococcus kodakarensis transcription pre-termination complex comprising FttA, Spt4, Spt5, and a transcription elongation complex (TEC). The structure shows that FttA interacts with the TEC in a manner that enables RNA to proceed directly from the TEC RNA-exit channel to the FttA catalytic center and that enables endonucleolytic cleavage of RNA by FttA, followed by 5’→3’ exonucleolytic cleavage of RNA by FttA and concomitant 5’→3’ translocation of FttA on RNA, to apply mechanical force to the TEC and trigger termination. The structure further reveals that Spt5 bridges FttA and the TEC, explaining how Spt5 stimulates FttA-dependent termination. The results reveal functional analogy between bacterial and archaeal factor-dependent termination, reveal functional homology between archaeal and eukaryotic factor-dependent termination, and reveal fundamental mechanistic similarities in factor-dependent termination in the three domains of life: bacterial, archaeal, and eukaryotic. One sentence summary Cryo-EM reveals the structure of the archaeal FttA pre-termination complex ### Competing Interest Statement The authors have declared no competing interest. [1]: #ref-1 [2]: #ref-3
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要