4-bit Factorization Circuit Composed of Multiplier Units with Superconducting Flux Qubits toward Quantum Annealing

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
Prime factorization (P = M*N) is considered to be a promising application in quantum computations. We perform 4-bit factorization in experiments using a superconducting flux qubit toward quantum annealing. Our proposed method uses a superconducting quantum circuit implementing a multiplier Hamiltonian, which provides combinations of M and N as a factorization solution after quantum annealing when the integer P is initially set. The circuit comprises multiple multiplier units combined with connection qubits. The key points are a native implementation of the multiplier Hamiltonian to the superconducting quantum circuit and its fabrication using a Nb multilayer process with a Josephson junction dedicated to the qubit. The 4-bit factorization circuit comprises 32 superconducting flux qubits. Our method has superior scalability because the Hamiltonian is implemented with fewer qubits than in conventional methods using a chimera graph architecture. We perform experiments at 10 mK to clarify the validity of interconnections of a multiplier unit using qubits. We demonstrate experiments at 4.2 K and simulations for the factorization of integers 4, 6, and 9.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要