Analyzing Acceptor-like State Distribution of Solution-Processed Indium-Zinc-Oxide Semiconductor Depending on the In Concentration.

Nanomaterials (Basel, Switzerland)(2023)

引用 0|浏览9
暂无评分
摘要
Understanding the density of state (DOS) distribution in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is crucial for addressing electrical instability. This paper presents quantitative calculations of the acceptor-like state distribution of solution-processed IZO TFTs using thermal energy analysis. To extract the acceptor-like state distribution, the electrical characteristics of IZO TFTs with various In molarity ratios were analyzed with respect to temperature. An Arrhenius plot was used to determine electrical parameters such as the activation energy, flat band energy, and flat band voltage. Two calculation methods, the simplified charge approximation and the Meyer-Neldel (MN) rule-based carrier-surface potential field-effect analysis, were proposed to estimate the acceptor-like state distribution. The simplified charge approximation established the modeling of acceptor-like states using the charge-voltage relationship. The MN rule-based field-effect analysis validated the DOS distribution through the carrier-surface potential relationship. In addition, this study introduces practical and effective approaches for determining the DOS distribution of solution-processed IZO semiconductors based on the In molarity ratio. The profiles of the acceptor-like state distribution provide insights into the electrical behavior depending on the doping concentration of the solution-processed IZO semiconductors.
更多
查看译文
关键词
density of state, solution-processed IZO semiconductor, thin-film transistor, thermal analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要