Genome-wide CRISPR–Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers

Molecular Neurobiology(2023)

引用 0|浏览0
暂无评分
摘要
Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson’s disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn – monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.
更多
查看译文
关键词
α-Synuclein,CRISPR-Cas9,TSPAN3,Lysosome,Degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要