Biocorrosion Behavior of Epoxy-Based Multilayer Nanocomposite Coatings

Journal of Bio- and Tribo-Corrosion(2023)

引用 0|浏览2
暂无评分
摘要
Marine structures are prone to biocorrosion, so developing a suitable coating system to combat corrosion is essential. The present work is focused on the development of a multilayered epoxy-based nanocomposite (NC) coating system reinforced with ZnO filler in the first layer coat (NC1), ZnO and Cu 2 O in the second layer (NC2), and the third layer consisting of a varying percentage of TiO 2 with 5 wt%, 10 wt%, and 15 wt% of TiO 2 designated as NC3, NC4, and NC5, respectively, as top coat on the bare steel. Brush coating was employed to fabricate the coatings. Surface morphology and mechanical properties, wettability, corrosion, and biocorrosion behavior of the bare steel and coated substrates were examined. Mechanical properties such as linear scratch hardness and posi adhesion test values of the coatings were found to be in the order NC1 < NC2 < NC3 < NC4 < NC5. The NC3-coating system comprising three layers of coating reinforced with 5 wt% TiO 2 imparting hydrophobicity offered maximum resistance to microbial adhesion with 93% and 91% reduction in corrosion rate than the bare metal in natural and artificial seawater, respectively, after the 7th day of immersion. The bacterial and fungal cell counts in the biofilm after the 7th day of immersion were reduced by four and three orders of magnitude, respectively, in the nanocomposite against the bare substrate providing good biofouling resistance. NC3 coating also prevented the release of metal ions into the seawater and acted as a barrier for the leaching of metals from the coating underneath, thus, proving to be safe for the marine environment.
更多
查看译文
关键词
Biocorrosion,Nanocomposite coating,Hydrophobic TiO2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要