Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H2O2 Electrosynthesis

ACS catalysis(2023)

引用 0|浏览9
暂无评分
摘要
Large-scale development of electrochemical cells is currentlyhinderedby the lack of Earth-abundant electrocatalysts with high catalyticactivity, product selectivity, and interfacial mass transfer. Herein,we developed an electrocatalyst fabrication approach which respondsto these requirements by irradiating plasmonic titanium nitride (TiN)nanocubes self-assembled on a carbon gas diffusion layer in the presenceof polymeric binders. The localized heating produced upon illuminationcreates unique conditions for the formation of TiN/F-doped carbonhybrids that show up to nearly 20 times the activity of the pristineelectrodes. In alkaline conditions, they exhibit enhanced stability,a maximum H2O2 selectivity of 90%, and achievea H2O2 productivity of 207 mmol g(TiN) (-1) h(-1) at 0.2 V vs RHE. A detailedelectrochemical investigation with different electrode arrangementsdemonstrated the key role of nanocomposite formation to achieve highcurrents. In particular, an increased TiO x N y surface content promoted a higherH(2)O(2) selectivity, and fluorinated nanocarbonsimparted good stability to the electrodes due to their superhydrophobicproperties.
更多
查看译文
关键词
thermoplasmonics, oxygen reduction reaction, plasmonics, titanium nitride, nanohybrids, electrocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要