谷歌浏览器插件
订阅小程序
在清言上使用

Clinical importance and PI3K/Akt pathway-dependent anti-proliferative role of PALMD and DPT in breast cancer.

Pathology, research and practice(2023)

引用 0|浏览2
暂无评分
摘要
This study aimed to identify novel differentially expressed genes in breast cancer and to explore the clinical value and the anti-tumor or oncogenic effects of the identified genes using bioinformatics analysis and in vitro experiments. The differentially expressed genes in breast cancer patients were identified using Gene Expression Omnibus (GEO) database with the cut-off criteria p < 0.05 and |logFC| > 1. The expression levels of palmdelphin (PALMD) and dermatopontin (DPT) in normal tissues and breast cancer tissues were evaluated based on GEPIA and UALCAN databases. PALMD and DPT expression levels in clinical subgroups of patients with breast cancer were analyzed to assess the association of PALMD and DPT expression with clinical characteristics. The prognostic and diagnostic values of PALMD and DPT in breast cancer were evaluated from Kaplan-Meier (K-M) survival curves and receiver operating characteristic (ROC) curves. Pearson's correlation coefficient was performed using LinkedOmics. KEGG pathway enrichment analysis was performed using DAVID. The protein levels were evaluated using western blot analysis. Cell proliferation was assessed using MTT and EdU assays. Two important genes, PALMD and DPT, were identified in breast cancer. The expression levels of PALMD and DPT were significantly lower in breast cancer tissues. The expression levels of PALMD were closely related to age, histological type, and T stage of breast cancer patients. The expression levels of DPT were closely related to age, histological type, T stage, N stage, estrogen receptor status, and progesterone receptor status of breast cancer patients. The K-M survival curves showed that PALMD or DPT was not an independent prognostic factor for breast cancer. The ROC curves showed that both PALMD and DPT had good diagnostic potential for breast cancer. KEGG pathway enrichment results showed that PI3K/Akt pathway was an important overlapping signaling for PALMD and DPT. Further studies proved that overexpression of PALMD and DPT inhibited proliferation in MCF-7 and MDA-MB-231 cells by suppressing the PI3K/Akt pathway. PALMD and DPT knockdown promoted proliferation in MCF-7 and MDA-MB-231 cells by activating the PI3K/Akt pathway. These results collectively suggested that PALMD and DPT might serve as potential diagnostic biomarkers and therapeutic targets for breast cancer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要