Room-Temperature Chemoselective Hydrogenation of Nitroarene Over Atomic Metal-Nonmetal Catalytic Pair.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 0|浏览15
暂无评分
摘要
Constructing atomic catalytic pair emerges as an attractive strategy to achieve better catalytic performance. Herein, an atomic Ir1─P1/NPG catalyst with asymmetric Ir─N2P1 sites that delivers superb activity and selectivity for hydrogenation of various functionalized nitrostyrene is reported. In the hydrogenation reaction of 3-nitrostyrene, Ir1─P1/NPG (NPG refers to N, P-codoped graphene) shows a turnover frequency of 1197 h-1, while the reaction cannot occur over Ir1/NG (NG refers to N-doped graphene). Compared to Ir1/NG, the charge density of the Ir site in Ir1─P1/NPG is greatly elevated, which is conducive to H2 dissociation. Moreover, as revealed by density functional theory calculations and poisoning experiments, the P site in Ir1─P1/NPG is found able to bind nitrostyrene, while the neighboring Ir site provides H to reduce the nitro group in chemoselective hydrogenation of nitrostyrene. This work offers a successful example of establishing atomic catalytic pair for driving important chemical reactions, paving the way for the development of more advanced catalysts to further improve the catalytic performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要