Magneto-mechanical stimulation modulates osteocyte fate via the ECM-integrin-CSK axis and wnt pathway

iScience(2023)

Cited 0|Views7
No score
Abstract
Osteocytes are the mechano-sensors of bones. Large gradient high-static magnetic fields (LG-HMFs) produce stable, high-precision, and non-attenuation mechanical forces. We discovered that magnetic forces opposite to gravity inhibited MLO-Y4 osteocyte proliferation and viability by inducing structural damage and apoptosis. In contrast, magnetic force loading in the same direction as that of gravity promoted the proliferation and inhibited apoptosis of MLO-Y4 osteocytes. Differentially expressed gene (DEG) analysis after magnetic force stimulation indicated that the ECM-integrin-CSK axis responded most significantly to mechanical signals. was the most significant DEG between the 12 T upward and downward groups, showing the highest correlation with the Wnt pathway according to the STRING protein interaction database. Explaining the cellular and molecular mechanisms by which mechanical stimuli influence bone remodeling is currently the focus of osteocyte-related research. Our findings provide insights into the effects of LG-HMFs on bone cells, which have further implications in clinical practice.
More
Translated text
Key words
Cellular physiology,Molecular biology,Developmental biology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined