Periodic Mesoporous Organosilica as a Nanoadjuvant for Subunit Vaccines Elicits Potent Antigen-Specific Germinal Center Responses by Activating Naive B Cells.

ACS nano(2023)

Cited 0|Views25
No score
Abstract
Infection diseases such as AIDS and COVID-19 remain challenging in regard to protective vaccine design, while adjuvants are critical for subunit vaccines to induce strong, broad, and durable immune responses against variable pathogens. Here, we demonstrate that periodic mesoporous organosilica (PMO) acts as a multifunctional nanoadjuvant by adsorbing recombinant protein antigens. It can effectively deliver antigens to lymph nodes (LNs), prolong antigen exposure, and rapidly elicit germinal center (GC) responses by directly activating naive B cells via the C-type lectin receptor signaling pathway. In mice, both the gp120 trimer (HIV-1 antigen) and the receptor-binding domain (SARS-CoV-2 antigen) with the PMO nanoadjuvant elicit potent and durable antibodies that neutralize heterologous virus strains. LN immune cells analysis shows that PMO helps to effectively activate the T-follicular helper cells, GC B cells, and memory B cells and eventually develop broad and durable humoral responses. Moreover, the PMO nanoadjuvant elicits a strong cellular immune response and shapes this immune response by eliciting high levels of effector T helper cell cytokines. This study identifies a promising nanoadjuvant for subunit vaccines against multiple pathogens.
More
Translated text
Key words
periodic mesoporous organosilica,nanoadjuvant,antigen-specific
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined