Dielectric and gyromagnetic structure modulations of Zn-Sn codoped yttrium-iron-garnet based on the density-generalized functional theory and P-V-L bond theory

JOURNAL OF THE AMERICAN CERAMIC SOCIETY(2023)

引用 0|浏览9
暂无评分
摘要
Herein, the crystal structure, dielectric properties, and gyromagnetic characteristics of Zn-Sn codoped Y3ZnxSnxFe5-2xO12 (x = 0.0-0.5) prepared using a conventional ceramic process were investigated. According to the first-principles' calculations and complex crystal bonding theory, Zn2+-Sn4+ codoping can increase the relative dielectric constant (& epsilon;(r)) by enhancing the average ionicity. The x-ray photoelectron spectroscopy (XPS) and Raman analysis results indicate that an appropriate amount of Zn2+-Sn4+ codoping can help improve the microscopic morphology, maintain the appropriate ratio of divalent iron ions, and reduce the microwave magnetic and electrical losses of YIG ferrites. The optimized microwave properties are as follows. Y3Zn0.3Sn0.3Fe4.4O12 after sintering at 1400 & DEG;C; & epsilon;(r) = 15.6; dielectric loss, that is, tan & delta;(& epsilon;) = 4.3 x 10(-4); saturation magnetization, that is, 4 & pi;M-S = 2244 G; ferromagnetic resonance linewidth, that is, & UDelta;H = 37 Oe. These properties can help improve the performance of high-frequency microwave components by enhancing the properties of ferrite.
更多
查看译文
关键词
circulator, ferromagnetic resonance, microwave dielectric properties, P-V-L theory, YIG ferrites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要