Critical Process Features Enabling Aggressive Contacted Gate Pitch Scaling for 3nm CMOS Technology and Beyond

Chih-Hao Chang,V. S. Chang, K. H. Pan, K. T. Lai, J. H. Lu, J. A. Ng,C. Y. Chen, B. F. Wu,C. J. Lin, C. S. Liang, C. P. Tsao, Y. S. Mor, C. T. Li,T. C. Lin, C. H. Hsieh, P. N. Chen, H. H. Hsu,J. H. Chen,H. F. Chen, J. Y. Yeh, M. C. Chiang,C. Y. Lin, J. J. Liaw,C. H. Wang, S. B. Lee,C. C. Chen,H. J. Lin,R. Chen, K. W. Chen, C. O. Chui,Y. C. Yeo,K. B. Huang, T. L. Lee, M. H. Tsai, K. S. Chen,Y. C. Lu,S. M. Jang, S. -Y. Wu

2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM(2022)

引用 5|浏览7
暂无评分
摘要
To continue contacted gate pitch scaling, transistor with improved electrostatics, gate stack innovation, and appropriate contact scheme along with improved process control to reduce variability are all indispensable factors. As gate pitch scales into the sub-50nm regime, electrostatics of FinFET architecture, spacer material, and traditional contact scheme all approach their engineering limits. Here we report a leading-edge CMOS technology developed at 45nm contacted gate pitch that successfully incorporates optimized fin profile, low-k spacer and self-aligned contact scheme. The process robustness is validated by a logic test chip with >3.5 billion transistor gate count and fully functioning 256Mb HC/HD SRAM macros. The demonstrated high-density SRAM cell size of 0.0199 mu m(2) is the smallest reported to date.
更多
查看译文
关键词
aggressive contacted gate pitch scaling,CMOS technology,contact scheme,critical process features,gate pitch scales,gate stack innovation,improved electrostatics,improved process control,leading-edge CMOS technology,low-k spacer,process robustness,self-aligned contact scheme,size 3.0 nm,size 45.0 nm,size 50.0 nm,storage capacity 256 Mbit,transistor gate count
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要