Micro-alloyed Mg-Ca: Corrosion susceptibility to heating history and a plain problem-solving approach

JOURNAL OF MAGNESIUM AND ALLOYS(2023)

引用 2|浏览6
暂无评分
摘要
The exceptionally low corrosion rate ( & SIM;0.1 mm y -1 in concentrated NaCl solution for 7 days) enables lean Mg-Ca alloys great potential for diverse applications, particularly if relevant properties (e.g. mechanical strength, electrochemical performance, etc.) can be enhanced by thermomechanical processing. However, herein it is demonstrated that the corrosion performance of lean Mg-Ca is susceptible to the heating process. The corrosion rate of Mg-0.15 wt% Ca alloy is remarkably accelerated after annealing even for a short time (4 h at 400 & DEG;C) because Fe precipitation readily takes place. Fortunately, it is found that micro-alloying with dedicated additional elements is able to solve this problem. Nevertheless, the problem-solving capability is dependent on the element category, particularly the ability of the alloying element to constrain the Fe precipitation. Among the three studied elements (i.e. Sn, Ge and In), only In shows good competence of restricting the formation of Fe-containing precipitates, thereby contributing to retention of the superior corrosion resistance after annealing even at a rigorous condition (24 h at 450 & DEG;C). The finding creates good foundation for follow-up work of developing lean Mg-Ca-based alloys combining high corrosion resistance, superior electrochemical performance with excellent mechanical properties for applications as biodegradable implants and anode materials for aqueous batteries. & COPY; 2023 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
更多
查看译文
关键词
Magnesium,Micro-alloying,Thermomechanical processing,Corrosion,Impurity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要