High Cooperativity Using a Confocal-Cavity-QED Microscope

PRX QUANTUM(2023)

Cited 1|Views19
No score
Abstract
Cavity quantum electrodynamics (QED) with cooperativity far greater than unity enables high-fidelity quantum sensing and information processing. The high-cooperativity regime is often reached through the use of short single-mode resonators. More complicated multimode resonators, such as the near-confocal optical Fabry-Perot cavity, can provide intracavity atomic imaging in addition to high cooperativity. This capability has recently proved important for exploring quantum many-body physics in the driven-dissipative setting. In this work, we show that a confocal-cavity-QED microscope can realize cooperativity in excess of 110. This cooperativity is on par with the very best single-mode cavities (which are far shorter) and 21 times greater than single-mode resonators of similar length and mirror radii. The 1.7-& mu;m imaging resolution is naturally identical to the photon-mediated interaction range. We measure these quantities by determining the threshold of cavity superradiance when small optically tweezed BoseEinstein condensates are pumped at various intracavity locations. Transmission measurements of an ex situ cavity corroborate these results. We provide a theoretical description that shows how cooperativity enhancement arises from the dispersive coupling to the atoms of many near-degenerate modes.
More
Translated text
Key words
confocal-cavity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined