Application Layer-Based Denial-of-Service Attacks Detection against IoT-CoAP

ELECTRONICS(2023)

Cited 1|Views10
No score
Abstract
Internet of Things (IoT) is a massive network based on tiny devices connected internally and to the internet. Each connected device is uniquely identified in this network through a dedicated IP address and can share the information with other devices. In contrast to its alternatives, IoT consumes less power and resources; however, this makes its devices more vulnerable to different types of attacks as they cannot execute heavy security protocols. Moreover, traditionally used heavy protocols for web-based communication, such as the Hyper Text Transport Protocol (HTTP) are quite costly to be executed on IoT devices, and thus specially designed lightweight protocols, such as the Constrained Application Protocol (CoAP) are employed for this purpose. However, while the CoAP remains widely-used, it is also susceptible to attacks, such as the Distributed Denial-of-Service (DDoS) attack, which aims to overwhelm the resources of the target and make them unavailable to legitimate users. While protocols, such as the Datagram Transport Layer Security (DTLS) and Lightweight and the Secure Protocol for Wireless Sensor Network (LSPWSN) can help in securing CoAP against DDoS attacks, they also have their limitations. DTLS is not designed for constrained devices and is considered as a heavy protocol. LSPWSN, on the other hand, operates on the network layer, in contrast to CoAP which operates on the application layer. This paper presents a machine learning model, using the CIDAD dataset (created on 11 July 2022), that can detect the DDoS attacks against CoAP with an accuracy of 98%.
More
Translated text
Key words
denial-of-service, IoT attacks, CoAP security, application layer, DTLS
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined